
AD-A17l 613 IMPLEMENTATION OF GRAPHICAL LANGUAGE FOR ACCESSING I/
DATABASE(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
A NORASAN 28 JUN 86

UNCLASSIFIED FG 9/2 NL

I EEEEEEEEEEEE
IIIIIIIIIIIIIIlfflfflf
lllflfllflflflfll
EEEEEIIIIEIIEEE
IIEEEEEEEEEEEE
llfllflfllflflfllll

110111.
U. JL6

!CROCOPY RESOLUTION TEST CHART
NATIONAI NIJRFAtU OF STANDARDS-1%3-A

1Jwj

to NAVAL POSTGRADUATE SCHOOL

Monterey, California

II

77 E L E C T :.:

THESIS
IMPLEMENTATION OF GRAPHICAL LANGUAGE FOR

ACCESSING DATABASE

by

Alparslan Horasan

June 1986

3
L.L Thesis Advisor: C. T. Wu

Li. Approved for public release; distribution is unlimited.

_6 II z1O ,)

SECURITY CLASSIFICATION OF THIS PAGE AD -A C73 /
REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING -SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (if kblo) Naval Postgraduate School

6c. ADDRESS (Gtry Stat, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, anld ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (include Security Qsanfication) UNCLASSIFIED
Implementation of Graphical Language for Accessing Database

12 PERSONAL AUTHOR(S)

Alparslan Horasan
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S PAGE COUNT

Masters The is FROM TO 1986 June 20 T 1
16. SUPPLEMENTARY NOTAFION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP GLAD, Definition Window, Schema Design Area,

Manipulation Window, Help Windows

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
-This thesis is a part of the implementation of a new graphics user
interface for accessing a database proposed in paper (WU86). As a
result of this study, the data definition language of the proposed
graphics user interface GLAD (Graphical Language for Accessing
Database) has been implemented. This interface allows a user to
create a database schema graphically. It is easy to learn and easy to
use, in spite of conventional query languages. This thesis first discusses
the general concepts of database and introduces the system that the
implementation was achieved, then reviews the conventional query language
and previously proposed graphical user interfaces. After describing
the major features of GLAD, the implementation is explained in detail.
A listing of the program that achieves the interface is also provided.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
fJNCLASSIFIED/UNLIMITED 03 SAME AS RPT. 03 DTIC USERS UNCLASS IFIE

2a. N ME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Prot. C. T. Wu 409-646-1Ql 52Wq

DO FORM 1473, B4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

1 ,% ' '.% "

Approved for public release.-distribution unlimited.

Implementation Of Graphical
Language For Accessing Database

by

Alparslan Horasan
First Lieutenant, Turkish Air Force

B. S., Turkish Air War Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1986

Author: L~L '
Alparslan Horasan

Approved by: _______-________________________
C. Tho Wu. Thesis Advisor

V,1'-t Y. Lure. Chairman.

De ~artment of Computer Science

Kneale T.Dean of Information and Poh .'ences

ABSTRACT

This thesis is a part of the implementation of a new graphics user interface for

accessing a database proposed in paper [WU86]. As a result of this study. the

data definition language of the proposed graphics user interface GLAD(Graphical

Language for Accessing Database) has been implemented. This interface allows a

user to create a database schema graphically. It is easy to learn and easy to use.

in spite of conventional query languages. This thesis first discusses the general

concepts of database and introduces the system that the implementation was

achieved, then reviews the conventional query languages and previously proposed

graphical user interfaces. After describing the major features of GLAD. the

implementation is explained in detail. A listing of the program that achieves the

interface is also provided.

A -: !oil For

RA&I

JI04 I; , at

SBy.

*. Dist.ri , "0 1-n/
A ' 1 1v Codes

• : ./or

3

J LYZLz"1

TABLE OF CONTENTS

1. IN T R O D U C T IO N ... 6

II. DIFFICULTIES IN USING THE QUERY LANGUAGES 10

III. PRIOR RESEARCHES ... 12

IV . DESCRIPTION OF GLAD ... 15

V . IM PLEM ENTATION .. 18

A. TOP LEVEL INTERFACE ... 18

B. HOW TO CREATE THE DEFINITION WINDOW 20

C. HOW TO DRAW THE DIAGRAM .. 23

D. IM PLEM ENTATIO N .. 25

E. HOW TO PRESENT THE MENU .. 30

F. MANIPULATION WINDOW ... 34

G . H ELP W IN D O W S .. 34

H. DESIGN OF THE DEFINITION WINDOW 35

I. BACKGROUND OF THE DEFINITION WINDOW 35

J. UPDATE THE RECTANGLES ... 37

K. USE OF THE MOUSE TO CREATE AN OBJECT 38

L. DRAW A REGULAR OR NESTED RECTANGLE 39

M. DETERMINE WHERE CURRENTLY THE MOUSE IS 40

N. IDENTIFY A RECTANGLE(OBJECT) ... 40

4

•~

0. MON'E A RECTANGLE (OBJECT) 40

P. DELETE A RECTANGLE (OBJECT) 41

Q. CREATE A RECTANGLE (OBJECT)................................... 41

R. LINK ASSOCIATED OBJECTS WITH SOLID LINES 42

S. LINK ASSOCIATED OBJECTS WITH DASHED LINES............. 42

VI. CONCLUDING REMARKS .. 430

APPENDIX - PROGRAM LISTING... 45

BIBLIOGRAPHY ... 79

INITIAL DISTRIBUTION LIST .. 80

5

I. INTRODUCTION

A database model is a vocabulary for describing the structure and processing

of a database. DDL(data definition language) is the vocabulary for defining the

structure of the database. DDL specifies the conceptual scheme of the database.

The data definition language'is used when the database is designed. and when the

design is modified. DML(data manipulation language) is the vocabulary for

describing the processing of the database. Processing could be changing or

retrieving the database data. DDL and DML compose a query language.

A query language can be efficiently used only by sophisticated users such as

database administrators and system designers. Experiences in using these

languages have shown even those people with computer science background often

have difficulty using these languages. However, nowadays. they are not the only

ones who are dealing with databases. Casual users who are not computer science

professionals such as accountants, clerks, statisticians are the most frequent users

of the databases. They may not have the patience. ability, or desire to learn and

to use these query languages. Difficulties in using these query languages will be

reviewed in Chapter 2.

Because of the diversity of the users who are dealing with the databases from

casual to sophisticated users and difficulties using the query languages. a better

user interface is needed for the databases.

6

In the paper W.\U86i. a good user interface i. described a. capable of

supporting computer science professionals and the growing community of users

who have to access the information in the database management system but who

are not trained in the use of such systems. To support those users, a good user

interface must have some characteristics. This paper categorizes them into four

categories. The first one is ease of learning. A good user interface must be easy

to learn because of the diversity of the users. Second is ease of using because of

the same reason above. The third category is that it must be able to show what

data is stored in the database and what relations exist among them which is

known as database schema. Over the past years. database schemas have been

used to to explain the conceptual scheme of the database. However, it has never

been used for interfacing the database so the user does not have to remember the

types of- records and attributes and relations.. The fourth one is the power of the

interface to be able to handle complex queries.

Graphical user interfaces have been proposed by so many researchers as a

solution to better user interface. The upsurge in development of graphical user

interfaces stems from the capability of the graphics in terms of visualizing the

concepts. Graphics has been used in many ways. However. they all lacked

fulfilling the features of a better user interface which is explained in [WU86,.

Prior researches in this field will be reviewed in Chapter 3.

One of the approaches of graphical user interfaces is GLAD(Graphical

Language in Accessing Databases). GLAD attempts to eliminate the lacking

7

features of a good user interface that exist in other approaches. GLAD"

approach is to be able to use to database schema to access the database. The

features of GLAD will be reviewed in Chapter 4.

GLAD consists of two components which they are the same as the other

database management systems: DDL and DML. This thesis mainly covers the

implementation part of GLAD's DDL. DDL was implemented on system isir

which has a graphics capability that enabled us to implement the DDL part of

GLAD. Implementation will be reviewed in chapter5.

Graphics workstation that DDL was implemented has a high resolution

graphics display with an addressable screen space of 1280 pixels(height) by 2024

pixels(width) in a 19-inch display. Workstation has a keyboard and mouse as a

standard input. Mouse consists of three buttons: left most butt(used for

selecting and moving windows, middle button used for pop-up menus and right

most button used for creating and erasing the windows. Actions are done either

by these three buttons or selecting the action from the pop-up menu and letting

the go command run.

This workstation offers multiple window capabilities and a desktop

methaphor. Multiple windows enable tne user to deal with different windows

without loosing his attention.

Desktop consists of icons, each icon representing a program or a separate

device. For instance., Unix operating system is represented with Cshell icon.

8

Once the user creates the Unix OS window by selecting and letting the Cshell icon

run. he gets a separate device that works as a separate unix workstation.

With this graphics capability, user can create a database schema by creating

the records and the relations. The goal of this thesis is to implement the

graphical DDL facilities, so user can see which data is stored in the database and

which relations exist among them by scanning the schema.

9

II. DIFFICULTIES IN USING THE QUERY LANGUAGES

In this chapter we review the major difficulties in using the query languages.

Following factors can be considered as the major reasons for the difficulty in using

and understanding the query languages.

There are so many thingg to be recalled by the user. Before the user expresses

a query. he has to remember the names of the record types and the attributes.

User can only find the details of the attributes such as the format and the units of

the attributes by exploring the data and looking the attribute definitions up in

the dictionary. To determine the meaning of acronyms used to represent record

types and their attributes is another problem. These problems become worse

when the database has hundreds of records and thousands of attributes.

Most query languages are based on mathematical concepts such as predicate

calculus or algebra or set theory. These mathematical concepts leads to a

language with a solid foundation: often. however, users don't relate to

mathematical concepts such as range variables, join clauses or projections. More

explicit models should be used to support the non-expert user interface to

complex data.

To formulate a complex query correctly on the first try is considered as

success in dealing with the database. There is always a doubt as to whether the

query is complete or whether some conditions are missing. Sometimes user does

10

not have the complete query in his mind. Instead of a complete query. building a

query in a piecemeal fashion with feedback of partial results would be more

beneficial to the user. These query languages does not support experimental.

exploratory nature of formulating queries in piecemeal fashion.

Complex schemas with hundreds of elements in it. could be overwhelming to

deal with it. Most query systems have only two levels of detail at the schema

level: record(relation set) and attribute level. Even when second level is

suppressed. the user still has to locate the relevant record types. At the attribute

level, there are thousands of attributes of a record type to be checked to formulate

a query. It is very hard to find the relevant record types and attributes to

formulate a query.

Complex databases often have a large number of data sets that deal with

different subject matters. It is a hard job to know what and where data is being

kept. Lack of viewing the database generally with the query systems. blocks the

users to select subject matters that are of interest.

NIP

,-, ,.,',€ .,-.:,--'-.-. .-,.,.-.-.-.,..-..,-..... .. ,.- ..2,-. • . , , • , ,2 -

III. PRIOR RESEARCHES

In this chapter. we review some of the previously proposed graphics user

interfaces to understand the concept of graphical user interfaces.

SDMS (Spatial Data Management System) is a sophisticated data browser.

The representation of the query and the output data is done thorough the use of

"icons". which are graphical tokens representing database objects. With this

system the entire database is shown to the user as icons on multiple graphics

terminals. A user could move his cursor to an icon of interest and zoom to find

more detail.

The graphical presentation of the information encourages browsing and

requires- less prior knowledge of the contents and organization of the database.

That means, user does not have to specify the information precisely and does not

need to know exactly where in the DBMS the information is stored.

SDMS uses three color raster scan displays and one mouse for presenting and

accessing the data. One of the screens presents the entire icons. representing

different types of data in the database. (This feature corresponds to the use of

icon in the system isiv. This system also uses icons not only to represent the

database but also to represent different types of applications or systems

programs). The other screen displays the magnified portion of this data. By

12

using the cursor the entire data can be scanned. By zooming the Icons. the

information on this specific icon can be retrieved.

The weakness of this system is that it does not support complicated query

languages. For example, if a user wants to compare the informations of two

icons, he can't submit a query to do this. He has to find these two icons. get the

information from them and compare them. This shows, SDMS only provides

weak query languages.

TLMBER (Text, Icon and Map Browser for Extended Relations) is a user

friendly, graphics oriented browser for relational database. Timber is more

sophisticated, comparing with SDMS. In addition to data browsing, TIMBER

also gives a capability to browse texts, maps, and icons.

This system provides a sophisticated visual interaction with the data in a text

file. The text stored as database objects can be browsed and updated by users

with this system. It also provides a capability to display the geographic data.

Mainly. TIMBER is a sophisticated version of SDMS. But it does not

provide a means of representing the data and the relation between them. which is

called as database schema.

One of the systems which uses graphics devices as tools to interface to

databases is GUIDE (Graphical User Interface for Database Exploration). This

system contains subject directories, help messages. zooming facilities to the

relevant part of the database schema, and partial query formulation with

intermediate results.

13

This system offers a graphics interface to the user. The database schema i

displayed as a network of entity and relationship types.

During the data definition stage. Data base Administrator (DBA) provides

information about the schema, in addition to information on entities (objects).

relationships, and their attributes, their examples and explanations of these

objects. The graphical layout of the schema is fed in to the system in this stage.

In terms of visualizing database concepts. this system provides a better

interface then those mentioned above. But lack of aggregate functions. use of two

screens (one as a key board and also a query result presentation, and another for

schema representation) and use of two separate diagrams (Entity/Relationship

diagram and subject directory) for representing database schema are considered to

be weak points of GUIDE.

14

* LNV ~ X :~ i

IV. DESCRIPTION OF GLAD

This chapter describes the features of GLAD.

The main objective of GLAD is to provide users .with fast, easy access to large

volumes of data. GLAD achieves this objective by displaying a diagram of the

database schema. representifig the data stored in the database and the relations

among them. This diagram is capable of representing real world abstraction

concepts such as aggregation, generalization, and classification.

Aggregation is a grouping of objects and subobjects. An aggregate object

consists of atomic and non-atomic objects. Atomic objects are the ones that they

are an aggregation of one system-defined or a user defined "base" objects(string.

number, boolean, subrange, enumeration). An aggregate object is represented

with a rectangle with the name of the object written in it. The non-atomic

subobject of an aggregate object is represented with a separate rectangle, with the

name of the object written in it. The relation between them is represented with a

solid line.

Generalization is a grouping of objects which they can be regarded as a

member of a general category. The objects that comprise the generalized object

are called specialized objects. Generalized object is an abstract representation of

a group of objects. Each member of a generalized object can also be an abstract

representation of an another group of objects. This level of abstraction provides

15

user to deal with the same type of data without loosing his attention in the

diagram. A generalized object is represented with a nested rectangle and the

name of the object written in it.

An association between a generalized object and another object is represented

with a solid line as it is represented with aggregate objects. When one or both of

the objects are specialized objects the relation between them is represented with

dashed lines.

The last abstraction concept we mention here is Classification. Classification

imposes that each data item stored in the database is an information about some

object. Each data item of an objet is called as the member of the object.

To indicate that an object can have either one subobject or another. a circle is

used attached to the upper line of the rectangle. This circle can be used by all

the objEcts in the diagram. This type of relation among the objects is called as

disjunctive relation.

GLAD diagram to represent the database schema fulfills one of the features of

a good user interface: descriptiveness. The other features. easiness in learning and

using. of a good user interface is also fulfilled effectively by GLAD. GLAD is easy

to learn and to use. User does not have too much to learn to create the diagram.

Only concepts that user has to learn is that the regular and nested rectangles.

solid and dashed rectangles and circle. By knowing the meanings of the

components of a diagram and the use of the system, user is ready to create the

16

diagram. As to using the system. interaction is done with the mouse. by moving

the mouse to the desired operations and clicking the buttons.

How the objects and the relations among them are represented will be

reviewed in Chapter 5. Chapter 5 also talks about the use of the system in order

to create the diagram to define the database. One of the features of a good user

interface, powerfulness in expressing the complex queries, is mainly the concern of

manipulation part. Since the concern of this thesis is to be able to define a

database by using graphics facilities, manipulation of the database is not detailed.

17

V. IMPLEMENTATION

A. TOP LEVEL INTERFACE

Graphical database management system is represented as an icon on the

desktop. As the other icons represent different types of application or system

programs. database icon represents the windows opened for graphical database

management system. A window can be created either by putting the mouse on

top of the icon and clicking the right most button. or selecting the option from

the pop-up menu by middle button and letting the "go" command run.

When the DB window is created, a top level menu presents the top level

options for the database. Top level menu consists of 4 option boxes, representing

four types of actions to be performed: Define DB, Manipulate DB. Help. Quit.

Define DE box represents the window in which the creation of the database

schema is performed. While creating the database schema. the records are also

created. and the relations between the records are set. Creation of the database

schema and setting the relations between them will be detailed later in this

chapter.

Even the concern of this chapter is Define DB window. I would like to briefly

* mention of each top level option. One of the windows opened for the

manipulation of the database which will not be detailed further. is Manipulate DB

window. The actions such as update. query. retrieve are achieved on this window.

18

5 ",,.',, "-"",." -":','"

To keep the completeness of idea of GLAD Manipulatf DB window is represented

with a blank window. When Manipulate DB window is created a menu asking the

name of the database to be dealt with is presented. Designing the actions on

manipulating the database is not the concern of this thesis.

Help option box. on the top level menu, represents the windows that give

information about defining and manipulating the database. When the Help

option box. on the top level menu, is selected with the mouse and right most

button is clicked, the top level menu goes away and another menu containing the

options DB Definition and DB Manipulation is presented. This gives the user the

opportunity to learn how DB is created and manipulated. If the user wants

information about defining a database, he puts the mouse in the DB Definition

option box and clicks the right most button. This creates the window that will be

filled out. with the information about defining a database. Popup menu with an

Exit option is always available to exit the window and go back to Help menu.

The other window DB Manipulation will also be filled out with information about

manipulating the database. There is also QUIT option to go back to top level

menu.

The windows .describing the actions. can be put to the corners of the screen

so they can be read in case information is needed. However. for a sophisticated

user. there might be no need to review. Therefore, these windows might be

reviewed or not depending on the knowledge level of the user on dealing with the

database.

19

The last option box on the top level menu is QUIT. When this box is

selected and the right most button is clicked, all the windows associated with the

graphical database management system are killed. Killing a window also kills all

the windows associated with the program. After killing the window, user either

gets to desktop or to the other windows crea'ed before the killed window.

B. HOW TO CREATE THE DEFINITION WINDOW

Once the user decides to define a database. he puts the mouse in Define DB

option box. on the top level menu. and clicks the right most button. This creates

the Define DB window, which is going to be used to draw the diagram

representing the database schema. When the user gets the window, he is ready to

start creating the database schema. Only mouse is used to do this. Window

consists of three sections : the section that the type options are presented which is

on the upper left area of the window, the section that mode options are presented

which is in the upper right area of th window and the section that the diagram is

pdrawn. which I call schema design area. Type options presents the types of the

objects and relations to be created. Mode options presents the actions to create

and edit them.

A diagram. representing the concepts mentioned in Chapter 4. consists of five

components. The components are presented on the ulpper left corner of the

window, which I call the type option boxes. The components of the diagram and

what they represent is shown in Figurel.

'V.,. 20

i?

OBJECT GENOBJ- -

Represents an aggregate object or a

non-atomic object

Represents a Generalized object

Represents an association between

objects

Represents an association between

objects when one or both associated

objects are specialized objects

Used by aggregate and general-

ized objects. Represents that an object

can belong either one object or another

Figure 1

21

Vhen Dtjine DB window is first openied. a menu asks the user to enter the

name of the database to be defined. Diagram is saved under this name. This

diagram can be also called by the manipulation i)art with this name. Diagranis

also could be represented with icons. By giving a meaningful shape. each icon can

represent a diagram without giving a specific name to it. Benefit of using icons

instead of names is not to have to remember the names of the databases.

The mode options, on the upper right area of the window, gives the user the

capability to draw and edit the diagram. Modes can be selected by clicking the

left most button. Each time a mode is selected, the box that represents the mode

,i, highlighted. Mode options consists of four components: Draw, Aove, and

Delete. Draw mode is used for creating the aggregate and generalized objects and

creating the links between the objects. This mode is also used to draw the names

of the objects. Move mode is used to move the object in the schema design area.

By moving the objects. they can be put to the appropriate places in the diagram.

Delete mode is used for deleting an object. The mode option boxes is shown in

Figure 2.

Draw Move Delete

Figure 2

22

S S I

C. HOW TO DRAW THE DIAGRAM

When Define DB window is presented the default mode is Drau" mode.

because there is nothing created on the schema design area. User has a choice to

begin with either aggregate objects or generalized objects. If he chooses to create

an aggregate object. he selects the type option Object and clicks the left most

button. This brings a menu that asks the name of the object and the relations

existing with other objects. The menu is sent by pushing the middle button and

letting the go command run.

After this menu is sent, another menu is presented that asks the attributes of

the object. After the attributes of the object is received, user is ready to create

his object by drawing the rectangle. To do this. user puts the mouse in the

schema design area and pushes the left most button which will be the upper left

corner ot the rectangle. With the movement of the mouse a rectangle is created as

being the last position of the mouse is the lower right corner of the rectangle.

When the mouse is released a rectangle created and the name of the object is

drawn in it.

To represent that the objects have a disjunctive relation. user has to touch

the box. in which there is a circle, before drawing his rectangle. If circle box has

been touched. the rectangle comes with a circle in it.

In order to create a generalized object. user puts the mouse in type option

GENOBJ box and clicks the left most button. This prompts a menu asking the

names of the objects. comprising the generalized object and the name of the

23

objects which the object has a relation. Aiso the circle box can be toucheC To put

a circle inside the box to represent a disjunctive relation.

After all the objects in the schema have been created. they can be put

anywhere in the schema design area, by selecting the Move mode. An object can

be moved by selecting the object with mouse and pushing the left most button.

By moving the mouse, object is also moved to the place which is appropriate in

the schema. By releasing the button. object is set to the new position in the

diagram. All the objects can be put to the appropriate places in the schema with

this method.

Before creating the relations, if there is. the objects with wrong names. or

unwanted object can be deleted in Delete mode. To delete an object. user puts

the mouse in the rectangle. representing the object to be deleted and clicks the

left mo&t button. This erases the rectangle(object).

After the objects have been put to the appropriate positions in the diagram.

we can go back to Draw mode and create the links representing the relations

between objects.

To draw a solid line between rectangles(objects). which represents and

association between them. line box is selected with left most button. Now. user is

ready to draw the lines and link the associated objects. There is only one action

required to draw the lines. It is to put the mouse in the drawing area and click

the left most button. This creates the links with respect to the relations that

24

* '..

objects have. (Relations of the objects have been entered before. wvhile creating

the objects.)

The dashed lines, which represents an association between objects when one

or both associated objects are specialized objects. can be drawn with the same

method above. Since there is no library function to draw dashed lines, it is also

represented with solid lines. This can be later modified with dashed lines.

Define DB window also provides a pop-up menu. Pop-up menu consists of

two components: Clear and Exit. Clear command erases everything in the schema

design area. Exit command is used to exit the window by saving the schema

drawn in the schema design area. Before exiting the window a menu is presented

reminding the user that he diagram has been saved with the name which was first

put when entering the window. This menu also asks whether user wants to

continue his actions to add more objects or edit the objects. If user wants to go

back to the schema, he can get his diagram back by clicking the yes option in the

menu. With no option he can go back to the top level menu by exiting the

Define DB window.

D. IMPLEMENTATION

First of all I would like to explain what modules do, what kind of actions they

correspond in the process of using the system and what kind of relation exist

between them. I would like to also explain the library functions in sequence of

their appearance in the modules, correspondingly in the entire program.

25

p; I- 'r -e 1"r-. . .- - . . -. ...-

As it is shown in Figure3A. main program call- four functions. -Namnely.

Defu'indou, Manipwindou. Help. Quit. Function Defu'indou' handles the opening

of the Define DB window and the creation of the database schema on this

window. Manipwindow only opens a blank window to represent the window

Manipulate DB. Function Help first introduces the help menu and then creates

the windows, that explain the required actions to deal with this graphical

database management system. Quit is the function that erases all the windows

associated with the program.

26

.- 2

CCl

0

* 0

27

C4

bO

6) 1..

xb

0r.

I-u

bC
u-

C4)

LHU

.9)

4) -)

4--4 $
.44

4j.

28

x N

0

>
0

x
0

bo
9:
cd

3:
td

cd

u

CY)

0

bc

44'

x
0

0
cd

43
cd

0

Cd
4)

29

E. HOW TO PRESENT THE MENU

The library function Present.\lenu(menu.answers presents all the menus in

the program. PresentMenu displays a Pop-up menu described by the structure

pointed to by menu. interacting with the user to obtain a result. The initial state

of the menu is defined by the array of pointers answers. "Answer".

"Attr answer". "TopAnswer" are the examples in the program.

A menu is defined as a sequence of questions. each question consisting of

various choices. The data structure representing a menu is a tree of structures.

At the root of the tree there is a single struct menu structure that consist of three

components: label, size. question. label is a pointer to a string that is used as the

title of the menu. Welcome to DB world, Help. DB Name. OBJ ENTRY,

GENOBJ ENTR Y. Attributes are the examples used in the program. The title of

the merrM is centered in the title bar of the menu window.

Size indicates the number of questions in the menu. In the program there are

different types of menus asking different number of questions. The top menu has

only one question consisting of four choices. The Help menu also asks one

question consisting of three choices. db name enter menu which asks the name of

the database to be dealt with. has only one question. The menu

dbname save menu asks two questions: One is the name of the DB to be dealt

with and the other one is the question that prompts whether the user wants to

continue to perform. The menu object entry asks six question. The first one is

the name of the object and the rest is the names of the object that this particular

30

%,,V

object has a relation. The menu ge~iobj mere. asks 7 questions: the first one i, the

name of the database. the next three question are the names of the relations and

the resf is the names of the subobjects. The menu attribute-menu asks 6

questions that are the names of the attributes of an object.

Questions appear in the menu in the order in which they appear in the array.

A question structure has four components: type, label, size, choices. type is the

type of the question being used in the program. They are SELECT. STRING and

TOGGLE. SELECT question is one in which the choices are mutually exclusive.

exactly one of the possible choices may be selected by the user at any time. A

STRING question is one in which the result is a string of text entered by the user.

Type TOGGLE has not been used in the program.

label is a pointer to a string which will appear beside the question. Size

indicates the number of choices in the question: (For example. the question

top-entry has 4 choices.) Or in the case of string questions. the maximum length

of the string result.

Choice structure has three components: type. label, and shade. type is the

type of the choice which is only label. label is a pointer to a string which will

appear in the choice. This is the string at which users point to make a selection.

shade indicates the background color of the box representing the choice.

For each question the corresponding pointer on arrays points to the default

value for the question and, on return, to the result given by the user. For a select

question the pointer is to an integer whose value is the position of the selected

31

AI

choice in the choice array for the question. For a string question, the pointer i - to

an array of characters representing the string.

The first menu is the top level menu. The name of the menu is top_menu.

The title of the menu is "Welcome to DB world. There is only one question to be

asked. which is one element array with name top-entry. The type of the question

is SELECT. "Please enter" appears to the left of the question. There are 4

choices to be selected and the array top-choices includes those four choices. The

type of each choice is LABEL. the titles of the choices are the ones mentioned in

the top level menu. and the color of the background is white, which is indicated

with VTWhite.

Each choice in the menu corresponds to an integer from 0 to 3. The answers

taken from the menu is held in a variable. The main program continues working

until this variable becomes 3 which corresponds to function Quit. In case the

variable is zero Defwindow is operated. The window opened first is used as a

Define DB window by changing its title.

Library function Set WindouTitle fd.title) handles the problem of changing

the title of the window. The way this function is used as follows:

Set Window Title changes the title of the window associated with a specific file

descriptor to the null terminated string pointed to by title Title may have at

most 31 non null characters which are always painted in a standard title font and

are automatically centered in the title bar of the window. The next usages of this

window follows the same concept.

32

There is another window opened with titie "DATA" which is used to enter

the data for the database. This window is opened at the same time that the

Define DB window is opened. The way the rest of the windows are opened in the

program is as follows.

Open window(z, yw.h.title) opens a window on the desktop. z indicates the x

coordinate . y indicates the y coordinate of the window's upper left corner. h

indicates the height and w indicates the width of the window, title "DATA" is the

title of the window.

If the window already exists. by changing the window depth, existing window

is reused. The library function Change WindowDepth(fd, window, depth) is used for

this purpose.

Change WindowDepth changes the depth of the window according to its file

descriptor to the depth given by the user. The number of the windows opened is

always counted. Variable dcount counts the number of the windows that will be

used recalling the windows. Zero depth of the window indicates that the window

is the one currently being interacted. When the interaction is comlete the window

can be put to the lowest levelof the windows, next window after it comes to the

view and interaction is done with this window. By changing the window depths.

every window, that has been opened before can be reused. This method is

followed in the entire program.

Function Defwindow also utilizes library function "PresentMenu" to ask the

name of the database. The answer is saved in an array. Defwindow calls three

33

functions: Initialize. TouehBoxe s. Finish which perform the actions in definitionl

window. Each function will be detailed later in this chapter. When exiting the

window, another menu prompting the name of the database and with the

question asking whether to continue, is presented. The answer concerning to

continue is kept in a variable con. Define DB window stays active until no

answer has been received from the menu.

F. MANIPULATION WINDOW

Function Manipwindou, does not call any function. Since it is only an

initiative to DB manipulation, by using the library functions. it creates a blank

window that will be used by the manipulation part. This window also uses menus

concerning the name of the database to be dealt with and to save the diagram

created for the database schema and whether to continue the actions in the

window. Window stays active until Exit command has been received from the

pop-up menu.

G. HELP WINDOWS

Function Help calls two functions: Helpi and Help2. Helpl is used for

opening the window containing the information about how to define the database

and Help2 is used for opening the window about the manipulation of the

database. These two windows are also blank windows to be filled out later with

the information. Since the goal of this study is to use a window for the creation

34

of the database schema there has not been paid to much attention to these H1h,

windows.

H. DESIGN OF THE DEFINITION WINDOW

Initialization of the window. in done by function Initialize. Refresh.

RefreshBoxes and Background are called by this function. Refresh is called as a

parameter to a library function SetRefresh. Function Refresh also calls

BackGround and RefreshBoxes. Whht Background and RefreshBoxes do will be

explained later.

There are two types of line disciplines: NTTYDISC and TWSDISC. First

one is a default line discipline. Second one is is the one for window graphics

discipline. Function Initialize sets the line discipline to TWSDICS.

Another library function SetMouseMode sets the mouse mode for mouse input

to VT MOUSE DOWN. meaning input is taken when mouse is pressed.

Thickness of all lines are initialized to BOX LINE. That means. all lines

drawn on the window will have two pixel long width.

I. BACKGROUND OF THE DEFINITION WINDOW

Background is the function that puts every detail on the window that enabhle,

user to use the window. The schema design area. mode boxes that represents the

actions and type boxes representing objects(rectangles) and lines(associations) are

put by this function.

35
_a."

A,':--

There are some main tool that Background use The first important one i!

current position pointer. Current position pointer points to any point on the

window. To draw a rectangle border. to paint a rectangle. to draw a line. to

paint a string is done first putting this pointer to the upper left corner of the

candidate object and then doing the action. The library function to put the

current position pointer to a certain place is SetPosition. Second important tool

is the CurrentColor. The current color can be set to VT WHITE or VTBLACK

or between white and black specifying the numbers corresponding to different

tones of color gray.

By setting the color to a specific color and by putting the current position

pointer to a certain point, a rectangle border can be drawn by library function

PaintRectangleBorder. a rectangle interior can be painted by

. PaintReetangleInterior. a line can be drawn by PaintLine. a string can be painted
.

by PaintString. Tool SetJustification centers the string relative to current

positon pointer.

Another library function InvertRegion is used for highlighting a specific

region. To indicate that current mode and type, the white areas are inverted to

black and black areas are inverted to white in the box. Every time one of the

boxes is touched the box is inverted to indicate the current action being

performed.

Refrsh Routine, railed by library function SetRefresh. gets the current

:,,rrnanierit clipping boiinds of the window. Clipping bounds means that any

30G

''I

.4::

M (--

object or part of an object drawn outside of this area is not displayed. First time

window is opened clipping bounds covers the entire window. This clipping

bounds can be set to a specific area of the window.

Library function GetPermanent Clipping gets x and y coordinates and the

width and height of the window so when function Background is called. the

current position pointer is set to the upper left corner of the window- meaning

that x and y coordinates are set to zero. Upper left corner of the window is used

as a reference point when using the rest of the window, instead the upper left

corner of the screen.

Refresh Routine calls function Background and RefreshBozes. What

Background does was explained before. What RefreshBoxes does as follows.

J. UPDATE THE RECTANGLES

RefreshBoxes gets the current permanent clipping bounds and restricts this

area to the schema design area. This way the only area which can be drawn is

the schema design are. First. the area is painted to white and then. if there is.

the rectangles are drawn.

The features of Rectangles drawn in this area is kept in an array of records

called as "rectangle". xy coordinates and width and height of the rectangle. the

name of the rectangle. the relation names of this rectangle. if it is a genobj. the

subobject names of the rectangle are kept in this structure. Also whether it has

37

5, k~.k.~ L L A ~ J

got a circle, representing disjunctive relation, in i and whether it is a recaugh

representing a generalized object. is kept in this structure.

Every time RefreshBoxes is called the rectangles featuring the information on

objects are drawn on the schema design area. one by one. until the rectangles are

finished.

K. USE OF THE MOUSE TO CREATE AN OBJECT

What TouchBoxes does is to get the input from the mouse and do the

appropriate action. In case the right most button is pressed and released it redoes

the last action performed.

If left most button is pushed. the actions are different depending on the place

of the mouse. The information about where mouse is put is received by function

Use able Coordinates. If the mouse is in the schema design area it does the action

depending on which mode is being used. If Draw mode is being used. a rectangle

can be drawn: if mode is being used. a rectangle can be moved to another place in

the schema design area: if Delete mode is being used. it deletes the existing

rectangle pointed by the mouse.

In case the Draw mode is selected. 4 types of action can be done depending on

current type. If current type is OBJ TYPE. meaning that OBJECT box is

selected. then function Drau ,ox is called which draws a box in the schema design

area. In case GEN OBJ type. the same action is done. But function DrawBox

separates objects and generalized object depending on the boolean variabie

38

yenbool. In Drau' mode. the iine, and dashed iine: can also be drawn. If -he

circlebox is touched. boolean cirebool. in the structure rectangle. becomes TRUE

* and the rectangle is drawn with a circle in it.

In case the middle mouse is pushed. a pop up menu appears by librar-

function DisplayPopup. it gives the capability to the user to exit the window or to

clear the schema design area. If the clear command is chosen the action is to

paint the drawing area to white, if exit command is chosen, then action is to exit

the window and save the diagram.

L. DRAW A REGULAR OR NESTED RECTANGLE

Functions DrawRectangle and DrawRectangle2 are called by functions

RefreshBoxes. DrawBox. and MoveBox. As I explained above. RefreshBoxes

draws all the rectangles in the array of records "rectangle" by calling these two

functions. If the rectangle represents an aggregate object. then DrauRectangle is

called. or if it is a generalized object. then DrawRectangle2 is called. Both

functions take one rectangle at a time and draw the rectangle depending on the

information it contains. For example. if the circboolis TRUE than rectangle is

drawn with a circle in it.

At the time when Drau,Box is called by TouchBoxes. to draw the boxes.

function DrawBox calls these functions. above. by sending the a record with every

information in it. If Mot'eBox calls these two functions. the structure element

39

which is being moved, is sent to thene functions for the next place of the

rectangle.

M. DETERMINE WHERE CURRENTLY THE MOUSE IS

Function Useable Coordinates determines where currently the mouse is. If it is

the schema design area, then drawing, moving, or deleting can be done. If it is in

the type boxes area. then it sets the types to OBJECT. GENOBJ. LINE or

DASHEDLINE by inverting their boxes. If the mouse is inside the circle box then

it sets the boolean variable of the record to TRUE so when drawing the rectangle

it draws with a circle in it. If it is put inside the mode boxes. it sets the mode to

one of three modes. and inverts its box.

N. IDENTIFY A RECTANGLE(OBJECT)

Fuinttion IdentifyBox is called by functions MoveBox and DeleteBox. When

%moving or deleting the box. the mouse is put into the rectangle which is to be

moved or deleted. What IdentifyBox does is that it identifies which record of the

structure "rectangle" that the rectangle is. and returns the ID t of the record.

0. MOVE A RECTANGLE(OBJECT)

Function MoveBox gets the ID = of the rectangle to be moved and tracks the

action of the mouse. When the mouse is released the data about the new place of

the rectangle is put as a last record of the array and the previous information is

40

-'Iz

deleted. By calling RefreshBoxes. the array of records "rectangle" is redrawn with

the new changes in it.

P. DELETE A RECTANGLE(OBJECT)

Function DeleteBox also calls IdentifyBoz to get the ID # of the rectangle to

be deleted. And deletes the rectangle. The number of rectangles is decreased by

one. By calling RefreshBozes the place of the rectangle that is already deleted is

painted to white and the entire array is redrawn.

Q. CREATE A RECTANGLE(OBJECT)

When function DrawBox is called. first. the number of the rectangles is

increased then the x and y coordinates of the mouse is put to record's x and y

coordinates. The data about the name or the rectangle(object). relations of the

object amd. if there is. subobjects of the object taken from the menu are put into

the last element added to the array. If the right most button is pushed. then last

element of the array will be redrawn. The width and the height of the last

element is put to the added elements width and height part. If the left most

button is pushed and the mouse is moved while it is being pushed. library

function TrackRubberBox tracks the lower right corner of the rectangle. returning

the width and the height of the new rectangle.

The movement of the mouse is considered positive from left to right and from

up to down. If the rectangle is moved opposite to those above, then some

arrangement is done concerning to change the negative values.

41

R. LINK ASSOCIATED OBJECTS WITH SOLID LINES

Function Drawlines takes the first record of the array and compares the

relation names of this record with the rest of the object names. If there is a match

it calls the function Draw to draw a line between them by sending the ID **s of

the matched elements and then takes the next element and continues until the

elements of the array finishes.

S. LINK ASSOCIATED OBJECTS WITH DASHED LINES

Since the dashed lines in the schema represent a relation between an object

and a subobject of an general object it compares the names of the relations and

the names of the subobjects and calls the same function Draw to draw a solid line..

Because there is no library function to draw a dashed line.

Function Draw takes the ID #*s of two object, which there is a relation

between them. and draws a line between them depending on the position of two

rectangles. If a rectangle is below the other rectangle. it draws a line from the

middle of the bottom line to the middle of the upper line of the other rectangle.

If they are almost the same level, it draws a line from right side of one rectangle

to the left side or the other rectangle.

42

VI. CONCLUDING REMARKS

The entire thesis has been designated to the implementation of GLAD'S data

definition language. The program that is capable of having the user define a

database schema. has been coded in programming language C. The system that

the implementation was aciieved on has a C language graphics library. This

library enabled us to write the program and utilize the graphics capability of the

system.

Implementation of the program has been explained in Chapter 5. The usage

of the library functions and some of the important points of the library functions

have been explained, as well. The entire library can be found in the manual of

"isiv". This manual provides information on how to use the system. how to write

graphics programs by using the library functions. This manual also provides some

example programs that show how the library functions can be used to write

graphics programs.

Chapter 1 explains the major components of a database management system

which they are data definition language and data manipulation language. Some

query languages have been used for this purpose. These languages brought some

problems with them. The difficulties using these languages forced researchers to

take advantage of the new graphics capabilities of the computers. Chapter 2'.

43

explains the difficulties in using the query languages and prior researches to

overcome those difficulties.

GLAD's approach to the issue is to use a diagram representing the database

schema as an interface to the database. Over the past years. database schema has

been used to explain the database concepts. But, it has not been used in

accessing the databases. By visualizing the database concepts. user can

understand the underlying concepts of the database.

Implementation of the GLAD's data definition language can be considered as

a prototype. It is not complete, in terms of representing the entire data definition

language. But. it gives an idea. how computer graphics can be utilized to access

the database. specifically to define a database. When it is complete. I believe, it

will be rather useful to the database users.

44

44

APPENDIX - PROGIRAM LISTING

/' this program is written for the data definition language
of GLAD(Graphical Language in Accessing Data bases).*/

#include <vt.h>
#include <tools.h>
#include <bitmap.h>

#define MAX RECTANGLE 100 /* max rect.(objects) in the schema area
*define SPACE 10

#define BOX LINE 2 /* max width of all the lines */
*define BOX WIDTH 50
#define BOX HEIGHT 50
#define NTYPES 4

#define TYPE BOX X SPACE /* x coord. of type boxes */
#define TYPEBOX-Y SPACE /* y coord. of type boxes t/
/ * width and height of the type boxes */
#define TYPE BOX W (NTYPES*2*BOXWIDTH)
#define TYPE-BOX-H BOXHEIGHT

x and y coordinates of the circle box */
#define CIRC BOX X (TYPE BOX X+TYPE BOXW + SPACE)
#define CIRC BOX-Y SPACE
#define CIRC-BOX-W BOXWIDTH /* width of the circle box */
#define CIRC-BOX-H BOX-HEIGHT /* height of the circle box */

*define OBJECT TYPE 4
#define GENOBJ TYPE 5
#define LINE TYPE 6
#define DOTLINE TYPE 7

#define NMODE 3

P x and y coordinates of the mode boxes */
;define MODEBOXX (TYPEBOXX+TYPE BOX W+ 100

+BOX WIDTH)
idefine MODE BOX Y SPACE
/' width and height of the mode boxes */
#define MODE BOX W (NMODE*2'BOX WIDTH)
*define MODE-BOX-H BOXHEIGHT

45

=define DRAW 'MODE 0
= define MOVE MODE 1
=define DELETEMODE 2

x and v coordinates of the schema design area /
-'define DRAW BOX X (TYPE BOXX)
=define DRAW-BOXY (TYPEBOXY+TYPE BOXH+SPACE)

struct wstate istate: /* for the current state of the window */
struct vtseq input: /* for the input being received from the mouse 7
struct rectangle { / for the data on the rectangles(objects) /

short x; /* x coord. of the rectangle(object) /
short y: /* y coord. of the rectangle(object) */
short w: /* width of the rectangle(object) */
short h: /* height of the rectangle(object) 7
char name[20]; /* name of the object written in the rectangle 7
/* relation names of the object 7
char rell[20]:
char rel2[20]:
char rel3120,:
char subobjl[201: /* subobject names of the object,if the object'/
char subobj2[20]; /* is an generalized object. 7
char subobj3(20:
-bool genbool: /" TRUE for a generalized object /
bool circbool; /* TRUE for a rectangle with circle in it 7

} dlist[MAXRECTANGLE]; /* array of rectangles(objects) */

/' for the width and height of the drawing area depending on
the size of the window */

short DRAW BOX W.DRAW BOX H:
short npoints = -1; /* keeps track of the number of rectangles */
short current mode = DRAW MODE:
short current-type = OBJECT TYPE:
short repeat 0: / fora rectangle to be redrawn */

/ top level menu that appears when first DB window created and after
finishing to use one of the top level windows. ' /

/' this is an array choices. each element of the array having three components:
type of the choice which they are LABEL:label of the choice which appears
in the box and background color of the choice which they are all VT White.
meaning that the background color of the labels are white.

struct choice top choices[] = {

46

-,*

{LABEL. " Define DB " VT White}.
{LABEL. " Manipulate DB ". VT White}.
{LABEL. " HELP " VT White}.
{LABEL. " QUIT " VT White} }:

/* this is an array of questions.each element having four components
type of the question is SELECT.meaning that exactly one of the possible
choices may be selected by the user at any time.second component is the
label of the question. there are 4 choices to present and the name of
the array of the choices is the last one */

struct question topentry[] = {
{SELECT. "Please Enter", 4. topchoices}

/* this structure consists of three components : title of the menu window.
1 questions to be asked and the name of the array of the questions. */

struct menu topmenu = {
"Welcome to DB World". 1, topentry

/* this is an array of choices for the question helpentry.each element of the
array having three components: type of the choice which they are LABEL,the
title of the choice.and the background color of the choice. */

struct choice help choices[] = {
{LABEL. " DB definition ". VTWhite},
{LABEL. " DB manipulation ". VT White}.
{LABEL. QUIT ", VTWhite}

/* this is an array of questions for helpmenu.this array has only one element

in it and this element has three components: type of the question(SELECT),
label of the questionnumber of the choices(3).and the name of the array
of the choices. */

struct question help entry] {
{SELECT. "Description ". 3. helpchoices}

/* this structure has three components : title of the menu window.
1 questions to be asked and the name of the array of the questions. */

struct menu help menu = {
"HELP". 1, help entry

47

r

/ this is an array of questions for the menu "dbname enter menu".it has only

one element in it and this element consists of four components : the first

component STRING is the type of the choice which is a question in which

the result is a string of text entered by the user.second one is the label
for the string.25 indicates the max. number of letters alloyed for the

string also 0 indicates that there is not an array of choices for string.
struct question name enter[] = {

{STRING, "Please Enter Your DB Name", 25.0}.
}:

/* this menu asks the name of the data base.it has three components:the title

of the window is "DB Name".there is only one question to be asked.the name
of the array of the questions is name enter.

struct menu dbname enter menu = {
"DB Name". 1. name enter

}:

/* this is an array of choices for the second question of base-name

struct choice cont choices[) = {
{LABEL. "yes VT White.
{LABEL. "no" VTWhite}

/* this is an array of the questions for menu "dbname save menu".first element
is a string holding the name of the data base entered by the user when menu

"dbname enter menu" was presented.it has four components:STRING.type of

the question:label of the question:25,max number of letters in the string:

O.indicating that there is not an array questions for the string.

second element of the array has four components : SELECT,type of the
question:label of the question;2.number of the choices and the name

of the array of the choices.

struct question base name(] = {
{STRING, "Your DB is saved with name".25.01.

{SELECT. "Continue ?".2. contchoices}
}:

/* this structure has three components: the title of the menu window is

"DB name" :there are 2 questions to be asked and the array of questions

struct menu dbname save menu = {
"DB name". 12. base name

48

* this is an array of questions for the menu "object entry".firsT element of

the array asks the name of the object.the rest of the array ask the names

of the other object that this object has a relation.the first components

are the type of question tobe asked.second ones are the labels for questions

20 is the max number of letters in the string. /
struct question obj _entry[] = {

{STRING, "Enter Your Object Name", 20, 0}.

{STRING. "Enter The Relations ". 20. 0}.

{STRING, " ". 20.0}.

{STRING. " " 20.0}.

{STRING. " " 20. 0}.
{STRING. " " 20. 0}

1:

/* this menu has three components: "OBJECT ENTRY" is the title of the

menu window.there are 6 questions to be asked.the array which is

holding the questions is objentry. */
struct menu object entry = {

"OBJECT ENTRY". 6. obj entry

/* this is an array of questions for the menu "genobjmenu".first question asks

the name of the general object.from second to fourth ask the name of the

otheFobject that this object has relation.the rest of the questions are

the subobject names of the general object. */
struct question genobj _entry[] = {

{STRING. "Enter Gen. Object name". 20. 0}.

{STRING. "Enter The Relations ", 20. 0}.

{STRING. " . 20.0}.
{STRING. " " 20.0}.

{STRING. "Enter SubObjects " 20. 0.

{STRING, " " 20.0}.

{STRING, " . 20, 0}

/* this structure presents a menu for a general object. first component of the

menu is the title of the menu window, second one is the number questions
appearing in the menu. third one is the array holding the questions /

struct menu genobjmenu {
"GENOBJ ENTRY". 7, genobjentry

j49

..--r ~r.. . r z , . - ' ; -V_ -, -_ -:

this is an array of questions for the menu "attribute memu". question!,
ask the attributes of an aggregate object.

struct question attrib _entry[i = {
{STRING. "Enter The Attributes ". 20. 0}.
{STRING. " . 20. 0}.
{STRING. " " 20. 0}.
{STRING. " . 20. 0}.
{STRING. " " 20, 0}.
{STRING. " " 20, 0}

} :

/* this structure presents a menu for the attributes of an aggregate
object. the name of the menu window is "ATTRIBUTES" there are 6 attribute
names to be asked and the questions is being held in the array
attribentry */

struct menu attribute menu = {
"ATTRIBUTES". 6, attrib entry

int top = 0: /P variable holding top level answer:initialized to
zero indicating that the first one of the
choices(DB Definition) is the default choice */

int help = 0: /P variable holding the answer from help menu:
initialized to zero indicating that the first one of
the choices(Describe DB def.) is the default choice*/

int con = 0: /* variable holding the answer from dbname save menu:
initialized to zero indicating that the first
one of the choices(yes) is the default choice /

char name[25] " ": /" variable holding the name of the data base /
char dummy[251 - " ": /P variable to clear the name in the

array "name" /
int "top answer[] = {&top}; /' answer from the top level menu /
int *help _answer[] = {&helpl}: /' answer from the help menu /
int "'dbname answer[] = {(int name.&con}: /' take the name of the data 7

/* base and answer as to continue to deal with it /

char objname[20]= " "
char ans 110] = ""
char ans2[20] = "

char ans3[20] = "it

char ans4[201 = "

50

char ans5;20 =
char ans6i2O =
char ans7 20! =
char ans820i "

char ans9i20 = "=

char anslO[20] =

char attl[201 = " ";
char att2[20] ""

char att3[20] = " 1"
char att4[20] = ":
char att5[20 = fi:
char att6[20] = " ";

/" holds the object name. the relation names and the subobject names of
a general object. */

int 'answerfl = {
(int*)objname,(int*)ans 1,(int*)ans2.
(int*)ans3. (int)ans4.(int*)ans5,
(int*)ans6. (int')ans7,(int*)ans8,
(int*)ansg, (int)ansO

/ holds the attirbute names of an aggregate object /
int *attranswer[] = {

(int*)attl,(int*)att2,(int*)att3.
(int*)att4,(int *) a t t S , (in t *)a t t 6

mt fd:
mt f = 1:
nt count:

mt dcount; /* window number of the definition window */
mt mcount: / window number of the manipulation window /
mt hicount: /* window number of the describe definition window /
mt h2count: /* window number of the describe manipulation window /
bool boolcirc = FALSE; /* whether the circle box has been touched /
bool touchbool = FALSE:
short option: /* for the pop-up menu
short defwinum = 0: /': to find out if definition window already exists /
short manwinum = 0: /* to find out if manip. window already exists 7
short helpdefnum = 0: /* to find out if describe defin. window exists 7

51

short helpmannurn = 0: To find oUT if describe nianip. window exists
short blackobj = 0: /1 to invert one of the type boxes
main()
{

count = 2;

/* continue until variable top becomes 3.representing "Quit" /
while (top '= 3) {

/ * present the top level menu and get the answer */

PresentMenu (&top _menu.top _answer):

/* if the answer,from the menu,is "DB Definition" 7
if (top == 0) {

/* change the window title to "DB Definition" /
Set WindowTitle(f. "DB Definition"):

if (defwinum == 0) j

/' open a window for the data entry /
OpenWindow(550.600,678.332."DATA ");

count = count + 1:
dcount = count:
Defwindowo:

/ * end if/

else {
/Pget the "DB Definition" window by changing the window depth 7
ChangeWindowDepth(fdcount.0):
Defwindow(0:

} /* end else /

} / end if /

/* if the answer.from the menu.is "DB Manipulation" /
if (top -- 1) {

/' if "DB Manipulation" window does not exist yet then open the
window and call the manipwindow /

if (manwinum == 0) {
OpenWindow(118.117,878.432."D B Manipulation"):

52

count - count - I:

mcount = count:
Manipwindow(:

} / end if*/

/* if the "DB Manipulation" window already exists then get the

window by changing the window depth.
else {

Change Window Depth (f.mcount.O);
Manipwindow(0:

} / end else /

/* if the "Help" option is selected */
if (top == 2)

Helpwindow):
} / end while /

Quito:

}/P end main */

Quito
{

Get W indowState (f.&istate):
fd = -1:
Set WindowState(f.&istate):

} /I end function 7

Defwindow()
/' this function is about "DB Defintion" window 1/

{
/* get the current state of the window 7
Get WindowState(f.&istate);

defwinum = defwinum + 1:

/* ask the name of the data base and get the answer /

. .'' ' ,,q ' " ". ' ' ' ' '.- , ' ' ' - - ''.'' '.'' '.''- - " '.-..''. ." ... '' '"'.

Preent.Xenu(&dbname enter menu.dbname answer):

/I continue until "no" answer has been received '/
while (con.= 1) {

/ initializa the window /
Initializeo;

/ * do the actual creation of the data base schema */

TouchBoxes0;

/* close the window *1.
Finish ():

/* present the name of the data base and ask whether to continue e /
P resentMenu (& dbname save _menu.dbname -answer):

SetWindowTitle(f."DATABASE");
} /* end while */

/* if "no" answer is received then change the window depth */
if (con == 1) {

ChangeWindowDepth(f,2.):
con = 0;

} *-end if */

/* clear the data base name in the array "name" for another entry */
copy (dummy.name);

} /* end function */

Manipwindow()
* /* this function handles the "DB Manipulation" window.only a blank window is

created for the completeness of the GLAD */

{
manwinum = manwinum + 1:

/* get the current state of the window */

GetW indowState(f.&istate);

/* ask the name of the data base and get the answer

54

Present.Menu(-dbname enter menu.dbname answer):
option = -1:

/I continue until "exit" command is received cc "no" option is selected /
do
{

option = DisplayPopUp(1,"menu EXIT SAVE ")-1;

/* if "exit"command is received from the pop-up menu 7
if (option == 0) {

ChangeWindowDepth(f.2,0);}

/* if "save" command" is received from the pop-up menu.then present
the name of the data base currently being dealt with and get
the answer as to continue to work /

else if (option == 1) {
PresentMenu(&dbnamesave menudbname_answer):}

}
while (con != 1 && option != 0):

/* of "no" answer is received then change the window depth */
if (col == 1) {

Change WindowDepth (f,2.0):
con = 0:

} /* end if /

/ clear the data base name in the array "name" for another entry */

copy(dummy.name);
} /* end function /

Helpwindow()

/ ask what kind of information the user wants and get the answer */

PresentMenu (&-help _menu.helpanswer):

/* continue until "Quit" option is received. '/

while (help !- 2) {

55

/ if "Describe DB Defintion" iS selected "
if (help == 0) {

/* if the window does not exist yet.then open the window /

if (helpdefnum == 0) {
OpenWindow(118,117.878,432."DESCRIBE DB DEFINITION"):
count = count + 1;
hicount = count;
Helpl():

}/* end if*/

/* if the window already exists.the change the window depth and
get the window /

else {
ChangeWindowDepth(f.hlcount,0):
Helpl():

} /* end else /
/* end if /

/i if "Describe DB manipulation " is selected 7
else if (help == 1) {

/ if the window does not exist yet.then open the window */
if (helpmannum == 0) {

- OpenWindow(118,117,878,432,"DESCRIBE DB MANIPULATION"):
count = count + 1;
h2count = count;
Help2();

} /* end if */

/* if the window already exists,the change the window depth and
get the window */

else {
ChangeWindowDepth(f.h2count,O):
Help2();

} /* end else 7

} * end else */

} / end while *

help = 0:
} /* end function */

56

Helpi()
{

helpdefnum = helpdefnuzn -+ - 1:
option =-1:

/* display the window until "exit "commnand is
received from the pop-up menu */

while (option != 0) {
option =DisplayPopUp(l, "menu EXIT ")-1.

}/"* end while ~

/P if the "exit" command is received, then change
the window depth and present the "Help" menu/

Change Window Depth (f. 2,0),
PresentMenu (&help -menu~help -answer);

* / end function ~

Help2()

helpmannum = helpmannurn + 1;
option = -1;

/display the window until "exit"command is
received from the pop-up menu*/

while (option != 0) f
option = DisplayPoplp(1."xnenu EXIT ")-I:

/ * if the "exit" command is received, then change the window depth and
present the "Help" menu *

ChangeW indow Depth (f.2,0);
PresentMenu (&help -menu.help -answer):

} *end function ~

copy(sl .s2)
char s1[1,s2[1;

57

int I:

i = 0:
while ((s2[i] = sl[i]) !)

} /* end function */

Initialize()
{

void Refresh(),RefreshBoxes():

/* get the current state of the window */
GetWindowState(f,&istate);

/* block asynchronous refresh and adjust for the window /

BlockRefreshAdjust(1):

/* specify and identifier and a refresh routine for the window */

Set Refresh(f,0,Refresh);

/* set the line discipline of the window to graphics line discipline */
SetLineDisc(f.TWSDISC):

/* allocate a buffer size of 1024 for the window */
SetBuf(f.1024);

/* inform the application when the mouse button is released */
SetMouseMode(f,VTMOUSE DOWN):

/' set the thickness of the lines and objects borders
to BOXLINE(=2)

Set Thickness(f.BOX_LINE):

/ adjust the width and height of the schema design area
according to the with and height of the window /

DRAW BOX W = istate.width - DRAW BOX X - (SPACE2):
DRAW -BOX-H = istate.height- DRAWBOXY - (SPACE'2):
Background;
RefreshBoxes(DRAW BOX X-BOX LINEDRAW BOX Y-BOX LINE.

RAWBOX_W +(2* BOX_LINE),DRAW BOX_H+ (2 BOX LINE)):

58

1111111,- .P 1 P 1

}/end function/

Background()

short i:

/* set the current position pointer to the upperleft corner of the window '
Set Position (f,0,0);

/* set the current foreground color to white/
Set Color (f,VT_-White);

/* paint the entire window to white ~
P aintRectanglelnterior(f.istate .width.istate.height):
SetPosition(f.TYPE_-BOX X,TYPE BOX Y);
PaintRectanglelnterior(f.TYPE BOX W,TYPE BOXH):

SetPosition(f,CIRC_-BOX_-X.CIRCBOXY);
Set Color(f,VTWhite);
P aintRectanglelnterior(f.BOX _WIDTH.BOX_-HEIGHT);

/ *set the current foreground color to black ~
Set Cblor(f,VT_-Black);

/ * set current position pointer to the upperleft corner of the type boxes*/
SetPosition(f.TYPEBOXX.TYPE BOXY):

/ * draw the border of type boxes * /

PaintRectangleBorder(fTYPE BOX W.TYPE BOX H);

/ * draw the vertical lines to separate different types/
for (i=(TYFEBOXX + 2*BOX WIDTH);

i<(TYPEBOXX+TYPEBOXW); i+=2"'BOX WIDTH){
SetPosition_(fdi.TYPE BOX _Y).
Paint Line(f.O.BOX_-HEIGHT),

} / end for * /

/'center the text relative to position pointer '
SetJustification(f.VTCEN 'I ER);

/set current position pointer in the middle of the object type box '

59

;etPosition(f. ITYPE BOX X BOX WIDTH).
(TYPEBOXY-i(TYPEBOXH/2))):

/ draw the text "OBJECT" in the first box 7
PaintString(f.V T STREND."OBJECT"):

/* set current position pointer into the genobj type box */

SetPosition(f,(TYPEBOXX+ (2 BOXWIDTH+6)),(TYPEBOXY+5));

/* draw the second rectangle in the genobj type box * /
PaintRectangleBorder(f,(2 BOXWIDTH- 12),(BOXHEIGHT- 10));

/* set current position pointer into the center of the genobj type box /
Set Position(f,(TYPE BOX X+ (3'BOX WIDTH)).

(TYPE BOXY+(TYPE BOX_H/2))):

/* draw the text "GENOBJ" in the second box */
Paint String(f.VT_STREND, " GENOBJ"):

/ set current position pointer to the upperleft corner of the circle box */

SetPosition(f,CIRCBOXX.CIRCBOX_Y);

/* draw the rectangle of circle box */

Paint-RectangleBorder(f,CIRCBOXW,CIRCBOXH);

/ * set current position pointer in the third line type box */

SetPosition(f,(TYPE BOX_X+210),(TYPE BOXY+(TYPE BOX H/2))):

/' draw a straight line in this box */
PaintLine(f.80.0):

/* center the text relative to position pointer */

SetJustification(f.VT_CENTER):

/ set current position pointer in the center of the dashedline type box 7
SetPosition(f, (TYPE BOX X+(7*BOX WIDTH)).

(TYPEBOX_Y+ (TYPE BOX_H/2-4))):

/* draw the string in the box /
PaintString(f.VT STREND." "):

/* set current position pointer in the center of the circle box */

60

SeTPosition(f.(CIRC BOX X-+-BOX WVIDTH/2).
(CIRC BOX Y+BOX HEIGHT/2)):

/" draw a circle in the circle box /
PaintCircleBorder(f.4):

/* if one of the type boxes is touched then invert the box */
if (touchbool = TRUE)

InvertRegion(f,(TYPE BOX X+blackobj* (2*BOX WIDTH)).
TYPEBOXY,(2* BOXWIDTH),TYPE_BOXH):

/* set current position pointer to the upperleft corner of mode boxes 7
SetPosition(f.MODE_BOX_X.MODE_BOX_Y);

/* draw the border of the mode boxes /
PaintRectangleBorder(f.MODEBOXW,MODEBOXH):

/' draw the vertical lines to separate the modes */
for (i=(MODE BOX X+(2*BOX WIDTH));

i< (MODEBOX__X+MODE BOXW):i+ =(2" BOX WIDTH)) {
SetPosition(f.i.MODE BOX Y):
PaintLine(f.O,BOXHEIGHT):
/* end for */

/ center the text relaiive to position pointer */

SetJustification(f,VTCENTER):

/* set current position pointer in the center of the "Draw" mode box */
SetPosition(f,(MODE BOX X+BOX WIDTH).

(MODE_BOX_Y+(MODEBOXH/2))):

/* draw the the string "Move" inside this box *
PaintString(f.VT_STREND,"Draw"):

/' set current position pointer in the middle of the "Move" mode box 7
SetPosition(f,(MODE BOXX+ (3*BOX WIDTH)).

(MODEBOX_Y+(MODEBOX_H/2))):

/* draw the the string "Move" inside this box */
Paint String(f.VT_STREND, "Move"):

/' set current position pointer in the middle of the "Delete" mode box 7
SetPosition(f.(MODE BOX X+(5*BOX WIDTH)),

(MODE BOX Y+(MODE BOX H/2))):
/* draw the the string "Delete" inside this box /

61

PaintString(f.VT STREND."Delete"):

/* invert the first box "Draw" mode to indicate that it is default mode /

InvertRegion(f.(MODE BOX X+current mode (2'BOX WIDTH)).
MODE _BOX Y,(2 -BOX -WIDTH).MODE _BOX_H):

} /' end function */

void RefreshBoxes(x,y.wh)
short x,y,w,h:
{

/" Each window has an associated rectangular area known as its clipping
bounds.Any object or part of an object drawn outside this area is not
displayed. *1

short cx.cy.cwch,ia:

/* return the X and Y coordinates of the upper left corner.width and height
of the window that are the current clipping bounds

GetPermanentClipping(f,&cx,&cy,&cw,&ch):

/* specify the new rectangular area known as schema design area
SetPermanentClipping(f.DRAW BOX X-BOX LINE.DRAW BOX Y-

- BOX LINEDRAW BOX W+(2*BOXLINE). -

DRAW BOXH+(2 BOX-LINE));

/ restrict the current clipping bounds to the schema design area
RestrictPermanentClipping(f.xy,w,h):

/I set the current color to white /
SetColor(f.VTWhite):

/ set current position pointer to the upper left corner of schema drawing
area

SetPosition(fx,y):

/* paint the schema design area to white 7
PaintRectanglelnterior(f.w.h);

/* draw all the rectangles in the array of records "dlist":if the rectangle
represents a generalized object then draw double rectangle

for (i=0:i<=npoints;i++) {

62

if (dlistii .genbool FALSE)
DrawRectangle(&dlist ji]):

&Ise if (dlist~ij.genbool == TRUE)
DrawRectangle2 (&dlist [i]):

boolcirc = FALSE:
}/* end for */
/set the current color to black ~

Set Color (fVT_-Black);

/set current position pointer to the upper left corner of the schema
design area '

Set Position (f.D RA W BOX_X.D RANA -BOX _Y):

/' draw the rectangle border of the schema design area
Paint RectangleBorder(f.DRA W BOX W.DRAW -BOXH);

/set current clipping bounds back to the entire window ~
Set Permanent Clipping(f.cx cy .cw~c)
} ~end function ~

void Refresh (id.x,y,w~h)
int id:
short x-y~w.h;

short cx.cy.cw.ch:

/' ,et X.Y coords. and width and height of the window for clipp bounds *
Get Permanent Clipping (f. &cx.&cy. &cw, &ch);

/^ set current clipping bounds the schema design area *
SetP ermanen tClipping (f.x,y.w.h):

/' draw the background ~
Background 0:

/' draw the schema design area and the rectangles in it ~
RefreshBoxes(x,y.w.h):

/set current clipping bounds back to the entire window ~
Set Pei-manentC lipping (f.cx,cy.cw .ch):
} ~end function S

Finishi

set current clipping bounds to entire window /
Set Permanent Clipping(f.O.0. 10000.10000):

/' set current position pointer to the upper left corner of the window 7
SetPosition(f,0,0):

/ set current color to white /
SetColor(fVTWhite);

/* paint the entire window to white 7
PaintRectangleInterior(f.10000.10000):

/v set current state of the window /
Set WindowState(f.&istate):

/' write out any data buffered for the window /
Flush(f);
/* end function 7

TouchBoxes()
*QZ.

short x,y.w.h:

/* continue until "exit" command is received from pop-up menu
for (;:) (

/' get a single input sequence/
switch (getvtseq(f.&input)) {

/* if input is received via mouse /
case VT MOUSE:

repeat = 0:
/4 which mouse button is used? 7
switch(input.u.mouse.buttons &

VT MOUSE _LEFTIVT MOUSEMIDDLEVT MOUSE RIGHT)) {

% d. /* if the right most button is used then repeat the last action /
case VT MOUSERIGHT:

repeat = 1:

64

/ if the left most button is used
case VT MOUSE LEFT:

/' if the mouse is inside the schema design area /
if (UseableCoordinateso) {

/* set clipping bounds to schema design area /

SetPermanentClipping(f.DRAW BOX X.DRAW BOX Y.

DRAW BOX W.DRAW BOX_ H):
/* check current mode /
switch (currentmode) {

/* if zhe current mode is draw mode...*/
case DRAW MODE:

/* check the current type */
switch (currenttype) {

/* if object box is selected,then draw a rectangle */
case OBJECT TYPE:

DrawBox();
break:

/*if "GEBOBJ" box is selected.then draw double rect.*/

case GENOBJ TYPE:
DrawBox():
break:

/* if straight line box is selected.then draw straight
lines between rectangles

case LINE TYPE:

DrawLineso:
break:

/* if dashed line box is selected.then draw dashed

lines between rectangles
case DOTLINE TYPE:

DrawDashedLines 0:
break:

break:

/* if the current mode is "Move" mode.then move a

65

%;% - 5-.. "

box pointed by the mouse

case MOVE MODE:
MoveBox():

break:

/" if the current mode is "Delete" mode.then delete a

box pointed by the mouse.
case DELETE MODE:

DeleteBox();

break:

default:
break:

} /* end switch */

/* set clipping bounds to the entire window */
Set Permanent Clipping (f, 0.0. 10000.10000):

}
break:

/* if the middle button is used... */
case VT MOUSE MIDDLE:

/* set the current position pointer to the place that

mouse currently stays /
SetPosition(f, input.u.mouse.x.input.u.mouse.y);

/* check the answer from the pop-up menu /
switch(DisplayPopUp (f. "do clear Exit ")) {

/" if the answer is "clear"... */
case 1:

npoints = -1: /* no more records of rectangles */

/ set current position pointer to the upper left corner
of the schema design area I/

SetPosition(f.DRAW BOX X.DRAW BOX _Y):

/ set current color to white */

SetColor(f.VT White):

/* paint schema design area to white */

Paint Rectanglelnterior(f.DRA W BOX _W.DRA WBOX H):

break:

66

case 2:

return:
break:

} / end switch(DisplayPopUp) /

break:

break:
/* if keyboard is used... /

default:

/* draw a status bar near the bottom of the screen

DisplayStatus(f."use the mouse"):
break:

} / end switch(getinp) /

} /* end for /

} /" end function 7

/ this routine takes care of drawing a rectangle.which represents an aggregate
object.with the iidme of the object in it . if the object has a disjunctive

relation it draws the rectangle with a circle.X.Y coordinates and width.

height of the rectangle.the name of the object and information wheter it

has a 'disjunctive relation is received with the element of the structure
"rectangle". */

DrawRectangle (r)
struct rectangle *r:
{

/ set the current position pointer to the upper left corner of rect. /
SetPosition(f.r- >x.r-,>y):

/* set the current color to white /

Set Color (f.VT White):

/' paint inside the rectangle to white /
PaintRectangleInterior(f.r- -,w.r- >h):

/I set the current color to black /
SetColor(f.VT -Black):

/' set the current position pointer to the upper left corner of rect. /
SetPosition(f.r- 'x.r->y):

67

/ draw the border of the rectangle /

PaintRectangleBorder(f.r- ,w.r->h):
r--genbool = FALSE:

/* set current position pointer on the middle of the rectangle /

SetPosition(f,(r- >x+r- >w/2),(r- >y+r->h/2)):

/ center the string relative to the current position pointer /
SetJustification(f.VT _CENTER);

/* draw the name of the object in the rectangle */

Paint String (f.VT_S TREND.r- >name):

/* if object has a disjunctive relation .then draw a small circle
under the upper border of the rectangle */

if (r->circbool == TRUE) {
SetPosition(f,(r- >x+r->w/2),r->y+3):
PaintCircleBorder(f,4);

} * end iff*/
boolcirc = FALSE:

} /* end fuction '/

/* this routine takes care of drawing a rectangle,which represents a generalized

object,with the name of the object in it . if the object has a disjunctive
relation it draws the rectangle with a circle.X.Y coordinates and width.
height of the rectangle.the name of the object and information wheter it
has a disjunctive relation is received with the element of the structure
"rectangle". */

DrawRectangle2 (r)
struct rectangle *r:{

set the current position pointer to the upper left corner of rect. /
SetPosition (f,r- >x.r->y);

/1 set the current color to white /
SetColor(f.VT_White);

/4 paint inside of the rectangle to white '/
PaintRectangleInterior(f,r->w.r- >h);

68

/set the current color to white
Set Color(f.VT_-Black):

/set the current position pointer to the upper left corner of rect. ~
Set Position (fir- >x.r- > y),

/* drawm the border of the rectangle *
PaintRectangleBorder(f.r->w,r->h);

/set the current position pointer to the upper left corner of the
second rectangle *

Set Position (f.r- > x+4,r- > y+4);

/W set the current color to white ~
Set Color (f.VT_-White):

/* paint inside the second rectangle to white*/
PaintRectanglelnterior(f,r- >w-8,r- >h-8):

/set the current color to black ~
Set Color(f.VTBlack):

/set the current position pointer to the upper left corner of the.
second rectangle *

SetPbosition(f~r->x+4,r->y+4):

/ * draw the border of the second rectangle /
PaintRectangleBorder(f.r- >w-8.r- >h-8):

->genbool = TRUE:

1set the current position pointer in to the middle of the rectangle ~
SetPosition(f,((r->x+4)+(r->w-8)/2),((r->y+4)+(r->h-8)/2))-,

/ * center the string relative to the current position pointer /
SetJustification(f.VT_-CENTER):

/ *draw the name of the object inside the rectangle/
PaintString(fVTSTREND.r- >namne);
/ * if object has a disjunctive relation .then draw a small circle

under the upper border of the rectangle
if (r->circbool == TRUE) {

SetPosition(f,(r->x+r->w/2),r- -,y+3):

69

Paint C ircleBorder (f.4):
}/' end if 7/

boolcirc = FALSE:
} 'end function7

int UseableCoordinates()

int option;
struct wstate save:
int fd;

/"' if the mouse is currently in the schema design area... *
if ((input.u.mouse.x > DRAW BOX X) &&

(input.u.mouse.x < (DRAWV BOX- X+DRAW BOXW)) & &
(input.u.mouse.y > DRAW BOX Y) &&
(input.u.mouse.y < (DRAW ,BOX Y+DRAW BOX_H))){
return(1):

P / end if */
/* if the mouse currently inside one of the type boxes... *
else if ((input.u.mouse.x > TYPE BOX X) &&

(input.u.mouse.x < (TYPE -BO5X X+TYPEBOX_W)) &
(input.u.mouse.y > TYPE BOX Y) & &
(ifiput.u.mouse.y < (TYPE_-BOXY+TYPTEBOXH))) {
if (touchbool == TRUE)

InvertRegion (f, (TYPE JBOX -X + blackobj * (2* BOX-WIDTH)).
TYPE -BOXY Y(2 *BOX WIDTH).TYPE_-BOX _H):

touchbool = TRUE;

/ * find out in which type box the mouse currently put '

current-type = ((input.u.mouse.x-TYP E -BOXA X/(2 *BOX -WIDTH) +4):

/* invert the box where currently the mouse is put ~
if (current-type == 4)

blackobj = 0:
else if (current type ==5)

blackobj = 1:
else if (current _type ==6)

blackobj = 2:
else if (current type ==7)

blackobj = 3;,
InvertRegion (f, (TYPE_-BOX _X + blaclcobj (2* BOXWIDTH)).

70

TYPE -BOX -Y.(2'BOX- NIDTH I.TYPE -BOX -H):

/if the "OBJECT" box is selected... */
if (((input. u.mouse.x- TYP E -BOX_-X) /(2 *BOX WIVIDTH)) 0) 0)

/* present object entry menu and get th, name of the objet and
the relation names of the object

P resentMenu (&object -entry .answer);

/* then present the attribute menu and get the attribute names*/
PresentMenu (& &attribute menu .attr -answer);

} * end if *
else if (((input. u. mouse.x-TYP E -BOXX) /(2'BOX_-WIDTH)) ==1){

PresentMenu(&genobj-menu~answer):
}/* end else if ~

} ~end else if */
/* if the circle box is touched... *
else if ((input. u.mouse.x > CIRC BOX X) &&

(input.u.mouse.x < (CIRC -BOX -X+CIRC BOX_-W)) &&
(input. u.mouse.y > CIRO BOX Y) &&
(input. u.mouse.y < (CIRCBOX Y+GIRCBOXH))){
boolcirc = TRUE;

}*/ end else if */
/* if one of the mode boxes is touched invert the region and change the

mdde *
else if ((input. u.mouse.x > MODE BOX X) &&

(input.u.mouse.x < (MODE -BOX -X+MODEBOX_-W)) &&
(input.u.mouse.y > MODE BOX Y) &&
(input.u.mouse.v < (MODE BOXY+MODEBOX_H))){
InvertRegion (f, (MODE -BOX X + current-mode * (2* BOXWIDTH)).

MODE_-BOX_-Y,(2*BOX_-WIDTH).MODE BOXH):
current -mode = (input.u.Mouse.x-MOD EBOXX) /(2 *BOX _WIDTH);
LnvertRegion(f, (MODE_-BOX_-X + current-mode * (2* BOXWIDTH)).

MODEBoxY, (2* BOX WIDTH),MODE _BOX _H):
} ~end else if *

return (0)
}/* end function *

int IdentifyBox()

short index:

71

~ ~ t.. 0

/find out which record of the array i . elecred either to move or delete
and return the record number of the rectangle.

for (index = npoints:index - =0: index--){
if ((input. u. mouse.x >= diist [index].x- BOX LINE) & &

(input. u. mouse.x <= (dlist[indexj .x+dlistlindex] .w±2*BOXLINE)) &
(input. u.mouse.y, >= dlist lindex].y-BOX LINE) & &
(input. u. mouse.y <c= (dlist jindex].y +dlist [index]. h +2 0BOXL LIN E)))

break:
} ~end for * /

return(index);
} ~end function *

Move Box()

short box~x,y,w,h,i:

/ *if the mouse inside a rectangle.then get the ID, number of the rectangle
if ((box = IdentifyBoxo) >= 0) f

x = dlist[box].x - BOX LINE:
y = dlistibox].y - BOX LINE:
w =dlistiboxJ.w + (BOX LINE*2)-,
h =dlist[box].h + (BOX LINE*'2);

/4 track the movement of the mouse with the box until a mouse button is
released. *

TrackFixedBox(f.
& dlist [box] .x.& dlist [box] .y.dlist [box] .w. dlist [box] .h.
DRAW BOX -X.DRAW BOX Y.DRAW BOX WA.
DRAW BOX -H.BOXLINE);--

dlistlnpoints+l] = dlistfbox];

for (i=box:i<=npoints;i++){
dlist[i] = dlist[i+11;
} ~end for7

RefreshBoxes(x,y ,wh)

if (dlist[i].genbool ==FALSE)

Draw Rectangle (&dlist [iJ):

else if (dlist[i].genbool ==TRUE)

72

DrawRectangle2(&dlist [ij):
4!end if7

else{
/* if the mouse is not in a rectangle.then draw a status bar near the

bottom of the screen * /
D isplayStatus(f, "not a box"):

} ~end else ~

} ~end function *

DeleteBox()

short box,x.y.w.h.i;

1* get the ID number of the box *
if ((box = IdentifyBoxo) >= 0){

x = dlist~box1.x - BOX LINE;
y =dlist[box].y - BOXLINE;
w =dlistjbox].w + (BOX -LINE*2):
h =dlist[box].h + (BOX LINE*2):

/* delete the box */
for- (i=box;i<npoints;i±+){

dlist[ij = dlist[i+1];
I
/ * decrease the number of the boxes*/
npoints--;

/ * draw the new array of boxes*/
RefreshBoxes(x,y.w,h):

}*/ end if *
else {

/* if the mouse is not in a rectangle.then draw a status bar near the
bottom of the screen * /

DisplayStatus(f,"not a box");
} * end else */

}/* end function ~

DrawBox()

73

Iincrease the number of the rectangles in the array
npoints+--s-:

/~put the x position of the mouse to the x coordinate of the rectangle ~
dlist[npoints] .x = input. u. mouse.x:

1* put the y position of the mouse to the y coordinate of the rectangle *
dlist [npoints] .y =input. u. mouse. y:
duist jnpoints] .w =0:

d list Inpoints]. h =0:

/* put the object namne.relation names and subobject names received from the
user into the last added element of the rectangle ~

copy (objname.dlist[npoints] .name):
copy (ans L dlist [npoints] .rell):
copy (ans2.dlist [npoints] .rel2):
copy (ans3.dlist [npointsl.rel3i:;
copy (ans4.dlist Inpoints].subobj 1):
copy (ans5 .dlist [npoints] .subobj2):
copy (ans6.dlist [npoint'sj.subobj3) *

/* clear the arrays which is used to get information from user
copy (durnmy.objname):
copy(dummy.ans 1):
copy (dummy.ans 2):
copy(dummy.ans3):
copy (dummy.ans4):
copy (dummy.ans-5):
copy (dummy~ans6):

/* if the right most button is clicked.the width and height of the
last element becomes the same as the element one before*/

if (repeat 1=0) {
if (npoints >0){

dlist fnpointsj .w =dlist [npoints-l] .w:
dlist[npoints] .h =dlist[npoints-1] .h;

}*/ end if *
}/end if * /

/track the movement of the mouse with the lower right corner of the
rectangle until a mouse button is released and return the width and
height of the rectangle *

else{

74

TrackRubberBox(1.dlist jnpointsI .x.dlist!'npointJ ..
&dlist [npoints] .w.&diist inpointsj .h.
DRAWN BOX -X.DRANN_-BOX -Y.DRAW_BOX W.
DRAW_-BOXH.BOXLINE):

14/ end else */
/* if the movement of the mouse is to the left relative to the x position

of the rectangle... */
if (dlistlnpoints].w < 0) 1

dlist [npointsl .w =-dlist jnpointsj .w:
dlistinpointsl.x -=dlistlnpointsl.w;

} / end if */
/* if the movement of the-mouse is up relative to the y position

of the rectangle... */
if (dlist~npointsj.h < 0){

dlist [npointsj .h =-dlist [npoints] .h:
dlistinpoints] .y -=dlist~npoints] .h;

}/* end if */
switch (current type){
case OBJECTTYPE:

if (boolcirc == TRUE)
dlistjnpoints] .circbool = TRUE;

else
dlist~npoints].circbool = FALSE;

DrawRectangle(&dlist (npoints]);
break:I -

case GENOBJ TYPE:
if (boolcirc == TRUE)

dlistlnpointsl.circbool = TRUE:
else

dlist inpointsl.c irecboo] = FALSE:
DrawRectangle2(&dlistinpoints]);
break,

} ~end switch ~
} ~end function *

DrawLines()

short i.e:
int width.height:

/* check the relations between objects if there is a relation then
draw a straight line between them * /

75

for (i=O:i. =npoinTS:i±±){
for (a=O:a-.=npoints:a++){

Set Color (f.VT Black):
if ((strc mp (dlistJi]. relILdlist (a]. name) ==0)]

(strcmp (dlist [il. rel2.dlist [a]. name) 0)1
(strcmp(dlist [i] .rel3.dlist[a] .name) ==0)) 1
Draw (&dlist [i] ,&dlist [a]);

}*/ end if ~
}/ end for *

} ~end for *1
1 *end function ~

DrawDashedLines()

short La:
int width.height:

/check if there is a relation between subobjects or between an object
and subobject.if there is a relation~then draw a straight line between
them.((it should actually be dashed line but since there is no library
function to draw dashed line, a straight line is itsed instead*/

for (i=0:i<=npoints~i++) {
for- (a=1;a<=npoints:a+±){

Set~olor(f.VT_-Black):
if (dlist[a].genbool ==TRUE) {

if ((strcnp (dlist[i] .rell .dlist [a] .subobj 1) ==0) 11
(strcmp (dust [i].rel2 .dlist~a] .subobj 1) ==0) 11
(strcmp (dlist [i] .rel3.dlist [a] .subobj 1) ==0)) {
Draw (&dlist [i] ,&dlist [a]);

I P~ end if */
if ((strcmp(dlist [i] .rell ,dlist [a] .subobj2) ==0) 11I

(strcmp(dlist[i] .rel2,dlist [a] .subobj2) ==0) 11
(strcmp(dlist [i] .rel3,dlist [a] .subobj2) ==0)) {
Draw (&dlist [iJ ,&dlist [a]);

}/" end if */
if ((strcmp (dlist[i] .rell .dlist [a] .subobj3) ==0) 11

(strcmp (dlist ji].rel2 .dlist [a] .subobj3) ==0) 11
(strcmp(dlist[i] .rel3.dlist [a] .subobj3) ==0)) {
Draw (&dlist [i] ,&dlist [a]):

}*/ end if *
} *end if *

76

if (dlistii .genbool == TRUE)
if ((strcmp (dlistjij .subobj Ldlist 'aj. .namne) ==0)

(strcmp (dl ist ij .subobj 2.dlist [al. name) 0) 0)
(strc mp (dlist Ii] .subobj 3.dlist [al. name) ==0)) {
Draw (&dlistj[i] .&dlist [al);
* / end if ~

} *end if *
} *end for *

} end for *1
} end function ~

Draw (r~s)
struct rectangle *r, *s:

int width,height;

/ * take two rectangles that there is a relation between them and draw
a line depending on the positoins of the rectangles *

if ((r->y+r->h) < s->y) {
SetPosition(f,(r- >x~r- >w/2) ,(r- >y+r- >h));
width = (s->x+s->w/2)-(r->x+r->w/2):,
height= s->y-(r->y~r->h);
PaintLine(f~width,height):
* / end if * /

else if ((s->y+s->h)Kr->y){
SetPosition(f,(s- >x+s- >w/2) ,(s- >y~s->h)):
width = (r->x+r->w/2)-(s->x+s->w/2):,
height= r->y-(s->y+s->h);
PaintLine(f.width.height):

} * end else if * /
else if ((r->y < s->y) && (r->x < s->x) && ((r->y+r->h)>s->y)){

SetPosition(f,(r- >x+r- >w) ,(r->y+r->h/2)).
width = -x(-xr>)

* height= (s->y+s->h/2)-(r->y+r->h/2);
PaintLine(fwidth,height);

* } /* end else if */
else if ((r->y > s->y) && (r->x<s->x) && (r->y < (s->y+s->h))){

SetPosition(f,(r- >x+r- >w) ,(r- >y+r- >h/2)):
width = -x(-xr>)

77

Paint Line (f.w idt h. height):
}7end else if/

else if ((r-> <' s-->y) && (r->x>s->-x) && ((r-.,-r-.>hy--s- xv)){
Set Position(f.(s- >x+s->w) ,(s->y+s- >h/2)):
width = -x(-xs>)
height= (r->v~r->h/2)-(s->y+s->h/2):
PaintLine(f.width,height):

} * end else if * /
else if ((r->y > s->y) && (r->x>s->x) && (r->y < (s->y+s->h))){

SetPosition(f,(s->x-s-s->w),(s->y+s->h/2)):
width = -x(-xs>)
height= (r->y+r->h/2)-(s->v+s->h/2):
PaintLine(f.width.height):

}*/ end else if
}/* end function /

strcmp (s .t)
char s[],t[];

nt i;

i=O:,
while*-s[i] == t[i])

if (sfi++] =

return(0);
return(s[i]-t[i]):

}/* end function *

78

BIBLIOGRAPHY

Wu. C. T. A New Graphics user Interface for Accessing Database. Naval
Postgraduate School. Department of Computer Science. Monterey. CA 93943.

Ullman. Jeffrey D.. Principles of Database systems, Computer Science Press.
Inc.. Rockville, Maryland 20850, 1982.

Kroenke. D., Database processing, Science Research Associates, Inc.. Chicago,
1983.

Herot. Christopher F.. "Spatial Management of Data" ACM Transactions
on Database Systems. December 1980. Volume 5. No. 4. Pages 493-514.

Daniel, B. and Hull. R., SNAP: A Graphics-based Schema Manager.
Computer Science Department, University of Southern California. Los Angeles,
CA, 1986.

Stonebraker, M., TIMBER: A Sophisticated Relation Browser. Department
of Electrical Engineering and Computer Science. University of California,
Berkeley, CA, 1982.

Wong, -Harry K. T. and Kuo. I., GUIDE: Graphical User Interface for
database Exploration, Lawrence Berkeley Lab., University of California.
Berkeley CA, 1982.

Braegger. Richard P. and Dudler A. and Rebsamen. J. and Zehnder C. A..
Gambit: An Interactive database Design Tool for Data Structures.
Integrity Constraints and Transactions. Eidgenoessische Techische
Hochschule(ETH), Institut fur Informatik. Zurich, Switzerland. 1984.

Rowe. L. A.. Fill-in-the-Form Programming. Computer Science Division,
EECS Department, University of California, Berkeley. CA. 1985.

7

mwi ARM

INITIAL DISTRIBUTI(N LIST -

No. Copie,,

1. Defense Technical Information Center
Cameron Station
Alexandria, ViTginia 22304-6145

2. Library, Code 0142 9

Naval Postgraduate School
Monterey. California- 93943-5000

3. Chairman. Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Computer Technology Curricular Officer. Code 37 1
Naval Postgraduate School
Monterey, California 93943-5000

5. C. T. Wu. Code 53Wq 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. ISTLT Alparslan Horasan 4
Enerji Evleri. Imnam Htp Ls. Kar.
B. Blok Kat:4 Daire:28
Aydin / TURKEY

7. Hv. K. K. Ligi 2
Kutuphanesi
Bakanliklar/Ankara TURKEY

8. Hv. Egitim K. Ligi I
Kutuphanesi
Guzelyali/Izmir TURKEY

9. Hava Harp Okulu 1
Kutuphanesi
Yesilyurt/Istanbul TURKEY

80

L)TI

